SECTION 23 72 00
AIR-TO-AIR ENERGY RECOVERY EQUIPMENT

PART 1 - GENERAL

1.01 SUMMARY
A. Section Includes:
 1. Heat wheels.
 2. Packaged energy recovery units.

1.02 SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, furnished specialties, and accessories.
B. Shop Drawings: For air-to-air energy recovery equipment. Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.
C. Field quality-control reports.
D. Operation and Maintenance Data: For air-to-air energy recovery equipment to include in maintenance manuals.

1.03 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. ARI Compliance:
C. ASHRAE Compliance:
 1. Applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."
 2. Capacity ratings for air-to-air energy recovery equipment shall comply with ASHRAE 84, "Method of Testing Air-to-Air Heat Exchangers."
D. NRCA Compliance: Roof curbs for roof-mounted equipment shall be constructed according to recommendations of NRCA.
E. UL Compliance:
 1. Packaged heat recovery ventilators shall comply with requirements in UL 1812, "Ducted Heat Recovery Ventilators"; or UL 1815, "Non Ducted Heat Recovery Ventilators."
 2. Electric coils shall comply with requirements in UL 1995, " Heating and Cooling Equipment."
1.04 **COORDINATION**

A. Coordinate layout and installation of air-to-air energy recovery equipment and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

B. Coordinate sizes and locations of concrete bases with actual equipment provided.

C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.05 **WARRANTY**

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of air-to-air energy recovery equipment that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Packaged Energy Recovery Units: Two years.

2. Warranty Period for Fixed-Plate Total Heat Exchangers: 10 years.

1.06 **EXTRA MATERIALS**

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Filters: One set(s) of each type of filter specified.

2. Fan Belts: One set(s) of belts for each belt-driven fan in energy recovery units.

3. Wheel Belts: One set(s) of belts for each heat wheel.

PART 2 - PRODUCTS

2.01 **HEAT WHEELS**

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Econovent.

2. Thermotech.

3. SEMCO Incorporated.

B. Casing:

1. Steel with standard factory-painted finish.

2. Integral purge section limiting carryover of exhaust air to between 0.05 percent at 1.6-inch wg and 0.20 percent at 4-inch wg differential pressure.

3. Casing seals on periphery of rotor and on duct divider and purge section.

4. Support vertical rotors on grease-lubricated ball bearings having extended grease fittings or permanently lubricated bearings. Support horizontal rotors on tapered roller bearing.

C. Rotor: Aluminum segmented wheel strengthened with radial spokes.

D. Drive: Fractional horsepower motor and gear reducer, with speed changed by variable frequency controller and self-adjusting multilink belt around outside of rotor.

1. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."

2. Motor Sizes: Minimum size as indicated. If not indicated, a large enough driven load will not require a motor to operate in service factor range above 1.0.
E. Controls:
1. Starting relay, factory mounted and wired, and manual motor starter for field wiring.
2. Variable frequency controller, factory mounted and wired, permitting input of field connected 4-20 mA or 1-10-V control signal.
3. Variable frequency controller, factory mounted and wired, with exhaust-air sensor to vary rotor speed and maintain exhaust temperature above freezing.
4. Variable frequency controller, factory mounted and wired, with exhaust- and outdoor-air sensors, automatic changeover thermostat and set-point adjuster, to vary rotor speed and maintain air differential temperature above set point. Rotor speed shall increase to maximum when exhaust-air temperature is less than outdoor-air temperature.

F. Disposable Panel Filters:
1. Comply with NFPA 90A.
2. Filter Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of the unit. Filters shall be removable from one side or lifted out from the access plenum.
3. Factory-fabricated, viscous-coated, flat-panel type.
4. Thickness: 2 inches.
5. Minimum Arrestance: 80, according to ASHRAE 52.1.
6. Minimum Merv: 8, according to ASHRAE 52.2.
8. Frame: Galvanized steel with metal grid on outlet side, steel rod grid on inlet side, hinged, and with pull and retaining handles.

G. Extended-Surface, Disposable Panel Filters:
1. Comply with NFPA 90A.
2. Filter Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of the unit. Filters shall be removable from one side or lifted out from the access plenum.
3. Factory-fabricated, dry, extended-surface type.
4. Thickness: 2 inches.
5. Minimum Arrestance: 90, according to ASHRAE 52.1.
6. Minimum Merv: [8], according to ASHRAE 52.2.
7. Media: Fibrous material formed into deep-V-shaped pleats and held by self-supporting wire grid.

H. Extended-Surface, Nonsupported-Media Filters:
1. Comply with NFPA 90A.
2. Filter Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of the unit. Filters shall be removable from one side or lifted out from the access plenum.
4. Minimum Arrestance: 95, according to ASHRAE 52.1.
5. Minimum Merv: 13, according to ASHRAE 52.2.
6. Media: Fibrous material constructed so individual pleats are maintained in tapered form by flexible internal supports under rated-airflow conditions.
8. Mounting Frames: Welded, galvanized steel with gaskets and fasteners, suitable for bolting together into built-up filter banks with space for prefilter.

2.02 PACKAGED ENERGY RECOVERY UNITS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Annexair
 2. Aaon
 3. Innovent
B. Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
C. Housing: Manufacturer's standard construction with corrosion-protection coating and exterior finish, gasketed and caulked weathertight, hinged access doors with neoprene gaskets for inspection and access to internal parts, minimum 2-inch thick thermal insulation, knockouts for electrical and piping connections, exterior drain connection, and lifting lugs.
 1. Inlet: Weatherproof hood or louver, with damper for exhaust and supply.
 2. Roof Curb: Refer to Division 07 Section "Roof Accessories" for roof curbs and equipment supports.
E. Supply and Exhaust Fans: Backward-inclined, plenum centrifugal fan with restrained, spring isolators flexible duct connections.
 1. Motor and Drive: Direct driven.
 2. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 3. Motor Sizes: Minimum size as indicated. If not indicated, a large enough driven load will not require a motor to operate in service factor range above 1.0.
 4. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.
 5. Spring isolators on each fan having 1-inch static deflection.
F. Disposable Panel Filters:
 1. Comply with NFPA 90A.
 2. Filter Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of the unit. Filters shall be removable from one side or lifted out from the access plenum.
3. Factory-fabricated, viscous-coated, flat-panel type.

4. Thickness: 2 inches.

5. Minimum Arrestance: 80, according to ASHRAE 52.1.

6. Minimum Merv: 8, according to ASHRAE 52.2.

8. Frame: Galvanized steel with metal grid on outlet side, steel rod grid on inlet side, hinged, and with pull and retaining handles.

G. Extended-Surface, Disposable Panel Filters:
 1. Comply with NFPA 90A.
 2. Filter Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of the unit. Filters shall be removable from one side or lifted out from the access plenum.
 3. Factory-fabricated, dry, extended-surface type.
 4. Thickness: 2 inches.
 5. Minimum Arrestance: 90, according to ASHRAE 52.1.
 6. Minimum Merv: 8, according to ASHRAE 52.2.
 7. Media: Fibrous material formed into deep-V-shaped pleats and held by self-supporting wire grid.

H. Extended-Surface, Nonsupported-Media Filters:
 1. Comply with NFPA 90A.
 2. Filter Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.
 3. Minimum Arrestance: 95, according to ASHRAE 52.1.
 4. Minimum Merv: 13, according to ASHRAE 52.2.
 5. Media: Fibrous material constructed so individual pleats are maintained in tapered form by flexible internal supports under rated-airflow conditions.
 7. Mounting Frames: Welded, galvanized steel with gaskets and fasteners, suitable for bolting together into built-up filter banks with space for prefilter.

I. Cooling Coils: Rated according to ARI 410 and ASHRAE 33, and bearing the ARI label.
 1. Access: Fabricate coil section to allow removal and replacement of coil and to allow in-place access for service and maintenance of coil(s).
 3. Tubes: Copper.
 4. Tube Headers: Copper.
 5. Fins: Aluminum.
 6. Fin and Tube Joint: Mechanical bond.
7. **Leak Test:** Coils shall be leak tested with air under water.

8. **Refrigerant Coils:**
 a. **Capacity Reduction:** Circuit coils for interleaved control.
 b. **Suction and Distributor:** Seamless copper tube with brazed joints.

9. **Coating:** Phenolic epoxy corrosion-protection coating after assembly.

J. **Cooling-Coil Condensate Drain Pans:**
 1. Fabricated from stainless-steel sheet and sloped in multiple planes to collect and drain condensate from cooling coils, coil piping connections, coil headers, and return bends.
 3. Drain Connections: At low point of pan with minimum threaded nipple.
 4. Units with stacked coils shall have an intermediate drain pan to collect and drain condensate from top coil.

K. **Hot-Water Coils:** Rated according to ARI 410 and ASHRAE 33, and bearing the ARI label.
 1. **Access:** Fabricate coil section to allow removal and replacement of coil and to allow in-place access for service and maintenance of coil(s).
 2. **Casing:** Stainless steel.
 3. **Tubes:** Copper.
 4. **Tube Headers:** Copper.
 5. **Fins:** Aluminum.
 6. **Fin and Tube Joint:** Mechanical bond.
 7. **Leak Test:** Coils shall be leak tested with air under water.
 8. **Coating:** Phenolic epoxy corrosion-protection coating after assembly.

L. **Indirect-Fired Gas Furnaces:**
 a. **AGA Approval:** Furnace shall bear the label of AGA.
 2. **Burners:** Stainless steel.
 a. **Ignition:** Electronically controlled electric spark with flame sensor.
 b. **High-Altitude Model:** For Project at elevations more than 2000 feet above sea level.
 3. **Heat-Exchanger Drain Pan:** Stainless steel.
 4. **Venting:** Gravity vented.
 5. **Power Vent:** Integral, motorized centrifugal fan interlocked with gas valve.
 6. **Gas Control Valve:** Electronic modulating.
 7. **Gas Train:** Single-body, regulated, redundant, 24-V ac gas valve assembly containing pilot solenoid valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff. Control devices and control sequence shall comply with requirements of FMG or IRI.
 8. **Access:** Fabricate section to allow removal and replacement of furnace and to allow in-place access for service.
M. Piping and Wiring: Fabricate units with space within housing for piping and electrical conduits. Wire motors and controls so only external connections are required during installation.
 1. Indoor Enclosure: NEMA 250, Type 12 enclosure contains relays, starters, and terminal strip.
 2. Outdoor Enclosure: NEMA 250, Type 3R enclosure contains relays, starters, and terminal strip.
 3. Include non fused disconnect switches.
 4. Variable-speed controller to vary fan capacity from 100 to approximately 50 percent.

N. Accessories:
 1. Roof Curb: Aluminum with gasketing, and factory-installed wood nailer; complying with NRCA standards; minimum height of 14 inches.
 2. Intake weather hood with 2-inch- thick filters.
 3. Louvered intake weather hood with 2-inch- thick filters in V-bank configuration.
 4. Exhaust weather hood with bird screen.
 5. Low-Leakage, Isolation Dampers: Double-skin, airfoil-blade, aluminum extruded-aluminum dampers with compressible jamb seals and extruded-vinyl blade edge seals, in opposed-blade arrangement with cadmium-plated steel operating rods rotating in stainless-steel sleeve sintered bronze or nylon bearings mounted in a single extruded-aluminum frame, with operating rods connected with a common linkage, and electric damper operator factory wired. Leakage rate shall not exceed IECC 2015 requirements.
 6. Isolation Dampers: Opposed-blade, extruded-aluminum dampers with cadmium-plated steel operating rods rotating in sintered bronze or nylon bearings mounted in a single extruded-aluminum frame with operating rods connected with a common linkage, and electric damper operator factory wired. Blades shall have gaskets and edge seals, and shall be mechanically fastened to the operating rod.
 7. Duct flanges.
 9. Hinged access doors with quarter-turn latches.
 11. Automatic, in-place, spray-wash system.
 12. Weatherproofing for tilt-control systems.

2.03 CONTROLS

A. Chilled-Water-Cooling-Coils Controls:
 1. Factory-mounted sensor in unit discharge with sensor adjustment located in control panel to modulate factory- coil-control valve to maintain temperature.

B. Refrigerant-Cooling-Coils Controls:
 1. Factory-mounted sensor in unit discharge with sensor adjustment located in control panel to control remote condensing unit to maintain temperature.
 2. Cooling Capacity Control: Multiple steps.

C. Hot-Water-Coils Controls:
 1. Factory-mounted sensor in unit discharge with sensor adjustment located in control panel to modulate factory- coil-control valve to maintain temperature.
D. Indirect-Fired-Gas-Furnaces Controls:
 1. Factory-mounted sensor in unit discharge with sensor adjustment located in control panel to control gas furnace burner to maintain temperature.
 2. Burner Controls: Modulating.

PART 2 - EXECUTION

3.01 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine casing insulation materials and filter media before air-to-air energy recovery equipment installation. Reject insulation materials and filter media that are wet, moisture damaged, or mold damaged.

C. Examine roughing-in for electrical services to verify actual locations of connections before installation.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION

A. Install heat wheels so supply and exhaust airstreams flow in opposite directions and rotation is away from exhaust side to purge section to supply side.
 1. Install access doors in both supply and exhaust ducts, both upstream and downstream, for access to wheel surfaces, drive motor, and seals.
 2. Install removable panels or access doors between supply and exhaust ducts on the building side for bypass during startup.
 3. Access doors and panels are specified in Division 23 Section "Air Duct Accessories."

B. Install heat-pipe heat exchangers so supply and exhaust airstreams flow in opposite directions. Install flexible connectors on ducts to enable tilt control; make connections airtight and with slack to compensate for full tilt.
 1. Install heat exchanger with clearance space for heat-pipe coil removal.
 2. Install duct access doors in both supply and exhaust ducts, both upstream and downstream, for access to both sides of the heat-pipe coil. Access doors and panels are specified in Division 23 Section "Air Duct Accessories."
 3. Install tilt-control components, including electronic controller, electric actuator and linkage, thermostats, and sensors.

C. Install fixed-plate heat exchangers so supply and exhaust airstreams flow in opposite directions.
 1. Install duct access doors in both supply and exhaust ducts, both upstream and downstream, for access to heat exchangers. Access doors and panels are specified in Division 23 Section "Air Duct Accessories."

D. Install gas-fired furnaces according to NFPA 54, "National Fuel Gas Code."

E. Install floor-mounted units on a 4-inch- high concrete base.

F. Equipment Mounting: Install air-to-air energy recovery equipment on concrete bases. Comply with requirements for concrete bases specified in Division 03 Section "Cast-in-Place Concrete."
 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the concrete base.
2. For supported equipment, install epoxy-coated anchor bolts that extend through the concrete base and anchor into the structural concrete floor.

3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

G. Roof Curb: Install on roof structure or concrete base, level and secure, according to The NRCA "Roofing and Waterproofing Manual - Volume 4: Construction Details - Low-Slope Roofing," Illustration "Raised Curb Detail for Rooftop Air Handling Units and Ducts." Or ARI Guideline B. Install air-to-air energy recovery equipment on curbs and coordinate roof penetrations and flashing with roof construction specified in Division 07 Section "Roof Accessories." Secure air-to-air energy recovery equipment to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.

H. Unit Support: Install unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure air-to-air energy recovery equipment to structural support with anchor bolts.

I. Suspended Units: Suspend units from structural-steel support frame using threaded steel rods and spring hangers. Comply with requirements for vibration isolation devices specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

J. Install units with clearances for service and maintenance.

K. Install new filters at completion of equipment installation and before testing, adjusting, and balancing.

L. Pipe drains from units and drain pans to nearest floor drain; use ASTM B 88, Type L, drawn-temper copper water tubing with soldered joints, same size as condensate drain connection.

1. Requirements for Low-Emitting Materials:
 a. Use PVC solvent cement that has a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 b. Use adhesive primer that has a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3.03 CONNECTIONS

A. Comply with requirements for piping specified in Division 23 Section "Hydronic Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to the unit to allow service and maintenance.

C. Connect piping to units mounted on vibration isolators with flexible connectors.

D. Connect cooling condensate drain pans with air seal traps at connection to drain pan and install cleanouts at changes in pipe direction.

E. Hydronic Water Piping: Comply with applicable requirements in Division 23 Section "Hydronic Piping." Install shutoff valve and union or flange at each coil supply connection. Install balancing valve and union or flange at each coil return connection.

F. Refrigerant Piping: Comply with applicable requirements in Division 23 Section "Refrigerant Piping."

G. Gas Piping: Comply with requirements in Division 23 Section "Facility Natural-Gas Piping." Connect gas piping with shutoff valve and union and with sufficient clearance for burner removal and service. Make connections with AGA-approved flexible connectors.

H. Comply with requirements for ductwork specified in Division 23 Section "Metal Ducts."

I. Indirect-Fired Furnace Vent Connections: Comply with Division 23 Section "Breechings, Chimneys, and Stacks."
J. Electrical Connections: Comply with applicable requirements in Division 26 Sections.
 1. Install electrical devices furnished with units but not factory mounted.

3.04 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and
 adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect
 components, assemblies, and equipment installations, including connections, and to assist in
 testing.

C. Tests and Inspections:
 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor
 rotation and unit operation.
 2. Adjust seals and purge.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and
 equipment.
 4. Set initial temperature and humidity set points.
 5. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

D. Air-to-air energy recovery equipment will be considered defective if it does not pass tests and
 inspections.

E. Prepare test and inspection reports.

3.05 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust,
 operate, and maintain air-to-air energy recovery units.

END OF SECTION 23 72 00