SECTION 23 21 13
HYDRONIC PIPING

PART 1 GENERAL

1.1 SUBMITTALS
 A. Product Data:
 1. Provide for each type of special-duty valve indicated. Include flow and pressure drop curves based on
 manufacturer's testing for diverting fittings, calibrated balancing valves, and automatic flow-control valves.
 B. Project Record Documents:
 1. Shop drawings:
 a) Detail fabrication of pipe anchors, hangers, special pipe support assemblies, alignment guides,
 expansion joints and loops, and their attachment to the building structure. Detail location of anchors,
 alignment guides, and expansion joints and loops.
 b) Welding certificates: Copies of certificates for welding procedures and personnel.
 c) Grooved joint couplings and fittings shall be shown on drawings and product submittals, and be
 specifically identified with the applicable Victaulic style number.
 d) Field test reports: Written reports of tests specified in Part 3 of this Section. Include the following:
 i) Test procedures used.
 ii) Test results that comply with requirements.
 iii) Failed test results and corrective action taken to achieve requirements.
 C. Operation and Maintenance Data:
 1. Hydronic specialties and special-duty valves.

1.2 Permits
 A. All field welding is subject to permitting through the Denver Fire Department. See General Conditions
 references to “Hot Work Permits”.

PART 2 PRODUCTS

2.1 PIPING MATERIALS
 A. Steel Pipe:
 1. Steel Pipe, NPS 2 and Smaller: ASTM A 53, Type S (seamless) or Type F (furnace-butt welded), Grade A,
 Schedule 40, black steel, plain ends.
 2. Steel Pipe, NPS 2-1/2 through NPS 12: ASTM A 53, Type E (electric-resistance welded), Grade A,
 Schedule 40, black steel, plain ends.
 3. Steel Pipe, NPS 14 through NPS 18: ASTM A 53, Type E (electric-resistance welded) or Type S
 (seamless), Grade B, Schedule 30, black steel, plain ends.
 4. Steel Pipe Nipples: ASTM A 733, made of ASTM A 53, Schedule 40, black steel; seamless for NPS 2 and
 smaller and electric-resistance welded for NPS 2-1/2 and larger.
 5. Coordinate flange class with products in other parts of this Section and in related Sections to correlate face
 size and bolt patterns.
 6. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250.
 9. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face,
 and bolt holes spot faced.
10. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.

11. Flanges and fittings below are available in several classes, materials, facings, and end connections. Coordinate with Project requirements.

12. Wrought cast and forged steel flanges and flanged fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 b) End connections: butt welding.
 c) Facings: raised face.

 a) Rigid Type: Housings cast with offsetting, angle-pattern, bolt pads to provide system rigidity and support and hanging in accordance with ANSI B31.1 and B31.9. Installation-Ready for complete installation without field disassembly, complete with grade EHP gasket suitable for water service to 250 deg F. Victaulic Style 107N.
 b) Flexible Type: For use in locations where vibration attenuation and stress relief are required. Victaulic Installation-Ready Style 177 or Style 77.
 c) AGS two-segment couplings for pipe sizes 14” and larger, with wide-width FlushSeal® gasket and lead-in chamfer on housing key. Victaulic Style W07 (rigid) and Style W77 (flexible).

15. Installation-Ready™ fittings for Schedule 10 through Schedule 80 plain end carbon steel piping in HVAC and mechanical applications sizes NPS ½” thru 2” (DN15 thru DN50). System rated for a working pressure of 300 psi (2065 kPa). Fittings shall consist of a ductile iron housing conforming to ASTM A536, Grade 65-45-12, with Installation-Ready™ ends [orange enamal coated] [or] [zinc coated]. Fittings complete with gasket liner, zinc-electroplated steel bolts and nuts as per the mechanical properties of ASTM A449, and 300 series stainless steel retainer. Victaulic QuickVic™ SD.

16. Flexible connectors: stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket; 150-psig minimum working pressure and 250° F maximum operating temperature. Flexible connectors shall not be used for to correct misalignment.
 a) Three Victaulic flexible type couplings may be used in lieu of a flexible connector for vibration attenuation at equipment connections. The couplings shall be placed in close proximity to the source of the vibration.

17. Packed, slip, expansion joints: 150-psig minimum working pressure, steel pipe fitting consisting of telescoping body and slip-pipe sections, packing ring, packing, limit rods, flanged ends, and chrome-plated finish on slip-pipe telescoping section.

18. Grooved End Expansion Joints:
 a) Packless, gasketed, type with grooved end telescoping body, suitable for axial end movement to 3”. 350 psi (2410 kPa). Victaulic Style 150 Mover®.
 b) Expansion joint consisting of a series of grooved end nipples joined with flexible-type couplings. Joint movement and expansion capabilities determined by number of couplings / nipples used in the joint. Victaulic Style 155.

19. Welding Materials: Comply with Section II, Part C, of the ASME Boiler and Pressure Vessel Code for welding materials appropriate for wall thickness and for chemical analysis of pipe being welded.

20. Gasket Material: Thickness, material, and type suitable for fluid to be handled; and design temperatures and pressures.

B. Copper Tube:
 1. For NPS 3 and smaller: Piping shall be drawn-tempered Type L copper tube (ASTM B88).
 2. Fittings shall be wrought copper (ASME B16.22).
3. Unions shall be wrought copper (ASME B16.22).
4. Grooved joint fittings shall be ASME B16.22 wrought copper or ASME B16.18 cast bronze, with copper-tubing sized grooved ends. (Flaring of tube or fitting ends to accommodate alternate sized couplings is not permitted.) Victaulic Copper Connection.
5. Grooved joint couplings consisting of two ductile iron housing segments cast with offsetting angle-pattern bolt pads, grade EHP center-leg gasket with pipe stop to ensure proper groove engagement, alignment, and pipe insertion depth, and ASTM A449 compliant bolts and nuts. Installation-Ready, for direct stab installation without field disassembly. Victaulic Style 607.
6. Solder for fittings with antimony-free and lead-free solder with shear strength not less than 7,250 PSI. Allstate "Aquasafe" or equal.
 a) NPS 1-1/2 and smaller: Solder filler materials shall be ASTM B32, 95-5 tin antimony.
 b) NPS 2 and larger: Solder brazing materials shall be AWS A5.8, Classification BAg-1 (silver).
7. The Viega ProPress and/or Apollo/Elkhart press technology systems are allowed for hydronic piping only. System valves to be Viega and/or Apollo ball valves up to 2”. Apollo is approved for 2-1/2” sizes and larger. One press tool will be provided per Propress job.

2.2 RELIEF VALVES
A. Acceptable Manufacturers:
 1. Kunkle
 2. Lonergen
 3. Lunkenheimer
 4. McDonnell and Miller
 5. Watts
B. Materials:
 1. Bronze body, Teflon seat, stainless steel stem and springs, automatic, direct pressure actuated, capacities ASME Boiler and Pressure Vessel Code IV certified and labeled.

2.3 [DIAPHRAGM] [BLADDER]-TYPE COMPRESSION TANKS
A. Acceptable Manufacturers:
 1. Amtrol
 2. American Tube and Controls
 3. American Wheatley
 4. Bell and Gossett
 5. John Wood Co.
 6. Taco
B. Materials:
 1. Welded carbon steel, rated for 125-psig working pressure and 375°F maximum operating temperature.
 2. Separate air charge from system water to maintain design expansion capacity by a flexible [diaphragm] [bladder] securely sealed into tank. Include drain fitting and taps for pressure gauge and air-charging fitting.
 3. Support vertical tanks with steel legs or base; support horizontal tanks with steel saddles.
 4. Factory fabricate and test tank with taps and supports installed and labeled according to the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1.

2.4 AIR-DIRT SEPARATORS
A. Acceptable Manufacturers:
 1. Amtrol
2. American Wheatley
3. Armstrong
4. Adamson
5. Bell and Gossett
7. Spirotherm
8. Taco

B. Materials:
1. Tangential-type air separators: Welded black steel; ASME constructed and labeled for 125-psig minimum working pressure and 375°F maximum operating temperature; perforated stainless-steel air collector tube designed to direct released air into expansion tank; tangential inlet and outlet connections; threaded connections for NPS 2 and smaller; flanged connections for NPS 2-1/2 and larger; threaded blow-down connection. Provide units in sizes for full-system flow capacity.
2. In-Line Air Separators: One-piece cast iron with an integral weir designed to decelerate system flow to maximize air separation at a working pressure up to 175 psig and liquid temperature up to 300°F.
3. Air Purgers: Cast-iron body with internal baffles that slow the water velocity to separate the air from solution and divert it to the vent for quick removal. Maximum working pressure of 150 psig and temperature of 250°F.

2.5 STRAINERS
A. Acceptable Manufacturers:
1. Armstrong
2. AW Cash
3. Boylston
4. Hoffman
5. ITT
6. Keckley
7. Mueller
8. Plenty
9. Victaulic
B. Materials:
1. Basket Strainers: duplex, quick-opening covers, stainless steel baskets, single-handle or hand-wheel operation of valve. 125-psig working pressure; high-tensile cast-iron body (ASTM A 126, Class B), flanged-end connections, bolted cover, perforated stainless-steel basket, and bottom drain connection.
2. Y-Pattern Strainers: 300-psig working pressure; ductile-iron body (ASTM A 536, Grade 65-45-12) grooved ends or cast-iron body (ASTM A 126, Class B), flanged ends for NPS 2-1/2 and larger, threaded connections for NPS 2 and smaller, bolted cover, perforated stainless-steel basket, and bottom drain connection. Basis of Design: Victaulic Style 732 and AGS W732.

2.6 PUMP SUCTION FITTINGS
A. Acceptable Manufacturers:
1. Armstrong
2. Bell and Gossett
3. Victaulic Company
B. Materials:
1. Fitting to match specified pump. Angle or straight pattern, 300-psig pressure rating, ductile-iron or cast-iron
body and end cap, pump-inlet fitting; with bronze or stainless-steel startup and bronze or stainless-steel permanent strainers; bronze or stainless-steel straightening vanes; drain plug; and factory- or field-fabricated support. Victaulic 731 and AGS W731 Series.

2.7 COMBINATION PUMP DISCHARGE VALVES

A. Acceptable Manufacturers:
 1. Armstrong
 2. Bell and Gossett.
 3. Victaulic Company

B. Materials:
 1. Angle or straight pattern, 175-psig pressure rating, cast-iron body, pump-discharge fitting; with drain plug and bronze-fitted shutoff, balancing, and check valve features.
 2. Triple-Duty valve assembly consisting of a Victaulic Vic-300 MasterSeal butterfly valve with Series 779 venturi-check or Series 716 check valve. For sizes 14” (350mm) and larger, AGS-Vic300 butterfly valve with Series W715 check valve.

2.8 FACTORY FABRICATED HEADERS AND EQUIPMENT DROPS

B. Factory Assembled Grooved End Vibration Pump Drops: 3” through 12” (DN80 though DN300). Orange enamel coated installation-ready assembly with flexible couplings to accommodate vibration attenuation and stress relief. Rated for working pressure to 300-psig (2068-kPa).
 1. Discharge Drop: Class 150 flange for pump connection, [base elbow for horizontal pump connection] [straight line with concentric reducer for vertical pump connections], tri-service valve assembly consisting of a spring-actuated check [Venturi-Check] valve and butterfly valve with offset stem for 360-degree circumferential seating, and pipe spool with thermometer and pressure ports. Victaulic Series 380.
 2. Suction Drop: Suction diffuser with stainless steel basket and diffuser and Class 150 flange for pump connection, butterfly valve with offset stem for 360-degree circumferential seating, and pipe spool with thermometer and/or pressure ports. Victaulic Series 381.
 3. Suction Drop: 90-degree base elbow with Class 150 flange for pump connection, Wye pattern strainer with stainless steel perforated metal basket, butterfly valve with offset stem for 360-degree circumferential seating, and pipe spool(s) with thermometer and/or pressure ports. Victaulic Series 382.

2.9 DIFFERENTIAL PRESSURE SWITCHES

A. Acceptable Manufacturers:
 1. McDonnell and Miller
 2. Mueller
 3. Barksdale

2.10 FLOW MEASURING AND BALANCING DEVICES

A. Acceptable Manufacturers:
 1. Manual balancing:
 a) Armstrong (Tour & Anderson)
 b) Barco
 c) Bell and Gossett “Circuit Setters”
 d) Flow Design “Flowset”
 e) Gerand
 f) Keystone
2.11 INHIBITED GLYCOL

A. Acceptable Manufacturers:

1. The Dow Chemical Company
2. Texaco
3. Lyondell
4. Calcium Controls

B. Product: Inhibited Propylene Glycol (Pure Virgin)

C. Closed-Loop, Water Piping Chemicals: sequestering agent to reduce deposits and adjust pH, corrosion inhibitors, and conductivity enhancers.

D. Heating Steam and Condensate Piping Chemicals: sequestering agent to reduce hardness and prevent feedline congestion and to provide alkalinity, oxygen scavenger, carbon-dioxide neutralizer, and filming amines.

E. Open-Loop, Condenser Water Piping Chemicals: sequestering agent to inhibit scaling, acid to reduce alkalinity and pH, corrosion inhibitor, and biocide.

F. Provide the following system glycol concentrations:

1. Chilled water system 30 percent
2. Hot water system 30 percent
3. All other heat transfer systems 30 percent

G. The manual fill system fill shall be performed by means of a temporary fill tank totally isolated from domestic water system. Fill connection shall be a female hose-end ball valve. Supply shall be with a removable hose which can be connected to a male hose-end valve connected to a backflow prevention device.

H. Temperature gauges across coils and pressure gauges across pumps are required. P&T taps are not sufficient.

I. Specify that test and balance ports in chilled-water systems be long enough to extend beyond insulation. Cutting-back the insulation or covering the ports is not acceptable.

J. Specify side stream filtration, either cartridge (25 micron) or cyclone style be installed in all hydronic systems.

2.12 HOSE KITS

A. Manufacturers

1. Pro Hydronics
2. Flow Design
3. Griswold

g) Victaulic / IMI TA Hydronics

B. Materials:

1. Calibrated balancing valves, NPS 2 and smaller: DZR brass (Ametal®) globe type or bronze body, ball type, 250-psig working pressure, 230°F maximum operating temperature, and having threaded ends. Valves shall have calibrated orifice or venturi, connections for portable differential pressure meter with integral seals, and be equipped with a memory stop to retain set position.

 a) Victaulic Koil-Kits Series 799, 79V, 79A, and 79B may be used at coil connections. The kit shall include a Series 786/787/78K circuit balancing valve, Series 78Y Strainer-Ball or Series 78T Union-Ball valve combination, Series 78U Union-Port fitting, and required coil hoses. A Style 793 and/or 794 differential pressure controller shall be provided as required. A meter shall be provided by the valve manufacturer that shall remain with the building owner after commissioning.

2. Calibrated balancing valves, NPS 2-1/2 and larger: Cast ductile-iron or steel body, ball type, 250-psig working pressure, 230°F maximum operating temperature, and having flanged or grooved connections. Valves shall have calibrated orifice or venturi, connections for portable differential pressure meter with integral seals, and be equipped with a memory stop to retain set position.

B. General: Hose kits shall be designed for 200 psig maximum working pressure, and operating temperatures from 40 to 212 deg F. All cartridge flow surfaces must be stainless steel

C. Hose
1. Length: 24 inches.
2. Type: stainless steel, braided.
3. Hose diameter shall correspond with the maximum flow below. Coil connection size hose kits will not be allowed.

Maximum pressure loss
1. Components included for pressure loss in the chart below: (2) 24-inch hoses, strainer with integral isolation valve and automatic flow limiting device with isolation ball valve.

2. Hose diameter, maximum flow rate and maximum water pressure drop (pressure drop is less than the temperature control valve):
 a) ½": 2.8 GPM maximum, 8.5 FT WPD
 b) ¾": 5.9 GPM maximum, 9.1 FT WPD
 c) 1": 10.0 GPM maximum, 9.1 FT WPD
 d) 1-1/4": 16.0 GPM maximum, 9.0 FT WPD
 e) 1-1/2": 23.0 GPM maximum, 9.0 FT WPD
 f) 2": 39 GPM maximum, 8.5 FT WPD

E. Y-Ball Strainer: Full port ball valve for shut off service with hose end drain valve, bypass plug and P/T port. Stainless steel construction. 8:1 ratio between strainer screen area and pipe diameter. If 8:1 strainer is not available, manufacturer shall increase the hose kit one full diameter.

F. Control Valve
1. By others

G. Balancing Device
1. Automatic flow balance valves: Factory reset and +/-5% of the specified flow rate. Cartridge shall be permanently marked by a letter that corresponds to the specific flow rate. Cartridge shall be stainless steel (other materials not acceptable). Continuous operation at differential pressures from 2 to 60 psi. Pressure/temperature ports with high and low-pressure designation for flow verification. With bronze, full-port ball valve for shut off service.

H. Configuration Order
1. Supply inlet: System connection, Y ball-strainer, hose, coil connection.
2. Return outlet: Coil connection, hose, control valve by others, automatic flow balancing valve, system connection.

PART 3 EXECUTION
3.1 PIPING INSTALLATION
A. Do not install piping underground or under floor slabs. Below grade lines shall only be permitted outside of the building as necessary.

B. Hot and Chilled Water, NPS 2 and smaller: aboveground, use Type L (Type B) drawn-temper copper tubing with soldered joints or Schedule 40 steel pipe with threaded joints.

C. Hot and Chilled Water, NPS 2-1/2 and larger: Schedule 40 steel pipe with grooved or welded and flanged joints.

D. Condenser Water: NPS 2 and smaller: aboveground, use Type L (Type B) drawn-temper copper tubing with soldered joints or Schedule 40 steel pipe with threaded joints.

E. Condenser Water: schedule 40 steel pipe with grooved or welded and flanged joints.
F. Condensate Drain Lines: Type L (Type B) drawn-temper copper tubing with soldered joints.

G. Specify unions or flanges downstream of valves and at equipment and apparatus connections. Unions or flanges for servicing and disconnect are not required in installations using grooved joint couplings.

H. Specify manual air vents at all changes in elevation downward in direction of flow with full size air chamber and pipe down to accessible location with ¼-inch copper tubing to a petcock.

I. Refer to Division 23 for basic piping installation requirements.

J. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

K. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap at low points in piping, system mains, shutoff valves, bases of vertical risers, equipment, and elsewhere as required for system drainage.

L. Grooved joints shall be installed in accordance with the manufacturer’s latest published instructions. The gasket style and elastomeric material (grade) shall be verified as suitable for the intended service. Gaskets shall be molded and produced by the grooved coupling manufacturer. Grooved ends shall be clean and free from indentations, projections, and roll marks in the area from pipe end to groove. Grooved coupling manufacturer’s factory trained field representative shall provide on-site training for contractor’s field personnel in the proper use of grooving tools, application of groove, and installation of grooved piping products. Factory trained representative shall periodically visit the jobsite to ensure best practices in grooved product installation are being followed. Contractor shall remove and replace any improperly installed products.

M. Installation of Victaulic products for hydronic services require a Victaulic Certified trained contractor and the Victaulic Inspection Service to verify the proper installation of each Victaulic joint. A Victaulic pre warranty letter must be submitted to the engineer detailing system parameters, warranty obligations, and cost of the inspection. The mechanical contractor is responsible to coordinate each inspection directly with Victaulic to ensure a timely commissioning of the Victaulic Piping System. Upon the completion of the Inspections Service, a 40 year warranty will be provided to the owner.

N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

O. Unless otherwise indicated, install branch connections to mains using tee fittings in main pipe, with the takeoff coming out the top of the main pipe.

P. Install strainers on supply side (upstream) of each control valve, pressure-reducing valve, solenoid valve, in-line pump, and elsewhere as indicated. Install NPS 3/4 nipple and ball valve in blow-down connection of strainers NPS 2 and larger. Match size of strainer blow-off connection for strainers smaller than NPS 2.

Q. Anchor piping for proper direction of expansion and contraction.

R. Provide isolation valves at all branch lines and equipment including coils, air vents, and all other hydronic equipment. Provide access to all branch line isolation valves and valves to equipment. Coordinate locations of access panels with general contractor.

S. Provide flow measuring and balancing device combinations of orifices, venturis, throttling valves and temperature and pressure taps to provide accurate flow measurement for manual balancing of hydronic systems.

3.2 VALVE INSTALLATION

A. Refer to Division 21-23 for additional requirements.

3.3 HANGERS AND SUPPORTS

A. Hanger, support, and anchor devices are specified in Division 23. Comply with requirements below for maximum spacing of supports.

B. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.

2. NPS 3 and larger: Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.

3. Spring hangers to support vertical runs.

4. Verify actual supported loads for hanger sizes and spacing. Consult structural engineer if required to support piping. Spacing and sizes below are from the 2000 ASHRAE HANDBOOK—"HVAC Systems and
C. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 1. NPS 3/4: Maximum span, 7 feet; minimum rod size, 1/4 inch.
 2. NPS 1 : Maximum span, 7 feet; minimum rod size, 1/4 inch.
 3. NPS 1-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 4. NPS 2 : Maximum span, 10 feet; minimum rod size, 3/8 inch.
 5. NPS 2-1/2: Maximum span, 11 feet; minimum rod size, 3/8 inch.
 6. NPS 3 : Maximum span, 12 feet; minimum rod size, 3/8 inch.
 7. NPS 4 : Maximum span, 14 feet; minimum rod size, 1/2 inch.
 8. NPS 6 : Maximum span, 17 feet minimum rod size, 1/2 inch.
 9. NPS 8 : Maximum span, 19 feet; minimum rod size, 5/8 inch.
 10. NPS 10: Maximum span, 20 feet; minimum rod size, 3/4 inch.
 11. NPS 12: Maximum span, 23 feet; minimum rod size, 7/8 inch.

D. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:
 1. NPS 3/4: Maximum span, 5 feet; minimum rod size, 1/4 inch.
 2. NPS 1 : Maximum span, 6 feet; minimum rod size, 1/4 inch.
 3. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 4. NPS 2 : Maximum span, 8 feet; minimum rod size, 3/8 inch.
 5. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 6. NPS 3 : Maximum span, 10 feet; minimum rod size, 3/8 inch.

E. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.4 PIPE JOINT CONSTRUCTION
 A. Refer to Division 23 for joint construction requirements for soldered and brazed joints in copper tubing; threaded, welded, and flanged joints in steel piping.

3.5 HYDRONIC SPECIALTIES INSTALLATION
 A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting. Install air vents with isolation valves between vent and hydronic main or branch.
 B. Install automatic air vents in mechanical equipment rooms only at high points of system piping, at heat-transfer coils, and elsewhere as required for system air venting.
 C. Install dip-tube fittings in boiler outlet. Install piping to expansion tank with a 2 percent upward slope toward tank. Connect boiler-outlet piping.
 D. Install in-line air separators in pump suction lines. Install drain valve on units NPS 2 and larger.
 E. For vertical expansion tanks: install expansion tanks on floor. Vent and purge air from hydronic system, and ensure tank is properly charged with air to suit system design requirements.

3.6 TERMINAL EQUIPMENT CONNECTIONS
 A. Size for supply and return piping connections shall be same as for equipment connections.
 B. Install control valves in accessible locations close to connected equipment.
 C. Install bypass piping with globe valve around control valve on heat exchangers. If multiple, parallel control valves are installed, only one bypass is required.
 D. Install ports for pressure and temperature gages at coil inlet connections.
 E. Provide isolation valves at all equipment connections. Refer to Division 23 for additional requirements.

3.7 FIELD QUALITY CONTROL
 A. Mechanical contractor shall obtain approval in writing from Balancing Contractor for all balancing devices.
B. Prepare hydronic piping according to ASME B31.9 and as follows:
 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 3. Flush system with clean water. Clean strainers.
 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.
C. Perform the following tests on hydronic piping:
 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 2. While filling system, use vents installed at high points of system to release trapped air. Use drains installed at low points for complete draining of liquid.
 3. For initial fill of glycol systems, meter volume to determine correct mix for specified concentration. Include system volume in report.
 4. Check expansion tanks to determine that they are not air bound and that system is full of water.
 5. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the design pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed either 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A of ASME B31.9, "Building Services Piping."
 6. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
 7. Prepare written report of testing. Testing report shall be submitted to DPS for approval.
D. Water Analysis: submit a copy of the water analysis to illustrate water quality available at Project site. Refer to Specification Section 23 25 00 HVAC Water Treatment for additional requirements.

3.8 ADJUSTING
A. Mark calibrated nameplates of pump discharge valves after hydronic system balancing has been completed, to permanently indicate final balanced position.
B. Perform these adjustments before operating the system:
 1. Open valves to fully open position. Close coil bypass valves.
 2. Check pump for proper direction of rotation.
 3. Set automatic fill valves for required system pressure.
 4. Check air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
 5. Set temperature controls so all coils are calling for full flow.
 6. Check operation of automatic bypass valves.
 7. Check and set operating temperatures of boilers, chillers, and cooling towers to design requirements.
 8. Lubricate motors and bearings.
C. Submit written documentation to DPS that the pump adjustments have been made prior to balancing of the system by the Test and Balance Contractor.

END OF SECTION 23 21 13