SECTION 25 00 00

INTEGRATED AUTOMATION

PART 1 GENERAL

1.01 SUMMARY

A. Provide all labor, materials, equipment and services necessary for a complete Direct Digital Control (DDC) System comprised of various types of Direct Digital Control (DDC) controllers, conventional electric/electronic controls, and equipment-mounted controls, as indicated. The system shall include all software and hardware for all specified capabilities.

B. All BAS points and data (i.e., setpoints, operating parameters, etc.) shall be enabled for reading and/or writing via BACnet communications to allow for the IBAS monitoring, scheduling, alarming and trending functions

1.02 COORDINATION

A. Electrical power wiring control shall be performed by the Electrical Contractor. Coordinate locations of circuits with the electrical design.

B. The automatic temperature control valves, separable wells for immersion sensors, and taps for flow and pressure instruments shall be provided by the Controls Contractor for installation by the Mechanical Contractor under the Controls Contractor's supervision.

C. All automatic temperature control dampers and airflow stations shall be provided by the Controls Contractor for installation by the Mechanical Contractor under the Control Contractor's supervision, unless they are components of packaged equipment.

D. Adjustments of manual balancing devices, as required to obtain design air and/or water flows, shall be by the Balancing Contractor. The Controls Contractor shall provide assistance to the Balancing Contractor with control adjustments as required to obtain design flows.

E. Controls Contractor shall provide the necessary software for use with the Balancer's personal computer for interfacing with their control equipment. Where proprietary equipment/gateways are required, this equipment shall be provided for the Balancing Contractor's use.

F. The General Contractor shall:

 1. Provide on existing work all necessary cutting, patching and painting.

 2. Provide access doors or other means of access through ceilings and wall for service to control equipment.

G. Provide necessary housekeeping pads and, where required, concrete inertia bases.

H. Duct smoke detectors shall be provided under the fire alarm system specification.

I. DPS Department of Technology Services will make any and all connections to the DPS intranet. DPS Department of Technology Services will assign an IP address to each IP-communicating controls device.

1.03 SUBMITTAL DATA AND SHOP DRAWINGS

A. Specify that all shop drawings, I/O schedules, point lists, system schematics, and product data shall be submitted for approval per Division 1, Section 01 33 00.

B. Submittal data and shop drawings shall conform to the following requirements:

 1. All shop drawings shall be prepared according to the requirements in the most current version of Division 00. Some of the requirements in this document are listed below.
a) Shop drawings shall be developed using the most current version of Auto-CAD (AutoDesk, Inc.) or a version that is 100 percent compatible with the current version. VISIO drawings are not acceptable.

b) Specific information shall be added to the title block of each sheet to aid in the DPS archiving/retrieval process for construction documentation.

2. All final or as-built shop drawings for temperature control will become permanent record documents and shall be prepared on 11”x17”.

3. All submittal data shall be bound or in a three-ring binder as appropriate. All the information shall be indexed and tabbed with reference to the specific section of the specifications. All options, ranges, and voltages (which will be provided) shall be clearly indicated on each product data sheet.

4. The format for submittal information shall be as follows:

a) Control drawings and building plans shall be CAD-prepared drawings. Drawings that cannot represent the total information on one drawing (i.e., a building plan) shall be noted with appropriate match lines, cross references, and key plans.

b) The control drawing package shall consist of:

i) A title sheet listing the project title, index of all the control drawings, and a network schematic showing all DDC panels and network connections on the project. The network diagram shall indicate all communication devices. The following information shall be provided for each network device:
 • Location (room number).
 • Power source (breaker panel I.D. and breaker number).
 • Panel software name and serial number.
 • Type of controller: the network diagram shall depict the actual connection sequence of the devices, including distances between devices, type of wire used and serial number of controller.

ii) The second drawing in the control package shall consist of typical installation details, a valve schedule, and a damper schedule. The valve schedule shall have entries for: valve tag, system served, quantity type (3w, 2w), GPM, actual CV, actual pressure drop, size, close-off rating, spring range, part number, and manufacturer. The damper schedule shall have entries for: damper tag, system served, quantity, type (PB, OB), CFM, size, actual pressure drop, quantity of actuators, spring range, damper model number, and actuator model number.

iii) Subsequent drawings shall depict complete systems (air handler, chiller, boiler, etc.). The drawing shall show the system schematic, all wiring of the DDC controller, all wiring of field devices, starters, and connections to equipment. Each drawing shall have a bill of materials and a sequence of operation.

iv) Floor plans shall depict equipment location, sensor, and panel locations. The duct and space static pressure monitor points shall be shown.

C. Submittal data and control drawings for all equipment and systems shall be submitted (per Section 01 33 00) to the Architect/Engineer for review prior to ordering or fabrication of the equipment. The following information shall be included in these submittals:

1. Thirty (30) days or less after notice to proceed:

a) Control valve and damper schedules that include:
 i) Size.
 ii) Cv (valves).
iii) Close off pressure rating (at 0 psi for N.C., two-way valves; at 20 psi for N.O., two-way valves; and at 0 psi between ports A and B for three-way valves).

iv) Gpm or cfm.

v) Spring range of the actuator.

vi) Quantity of actuators (dampers).

vii) Actual pressure drop for each item.

b) Technical specification data sheets of each system component and device, which includes all data needed to show compliance with this document.

2. Sixty (60) days or less after notice to proceed:

a) Control drawings with detailed piping and wiring diagrams; system schematics with controlled/monitored device locations; and connections to all enclosures, panels, and controllers, including a bill of material for all systems.

b) Sequence of operation for all controlled and monitored points for each system. Sequence shall be on same drawing as that for the corresponding system schematic.

c) A complete input/output schedule for each DDC panel and dedicated controller, including point name (the same name to be used in software), functional description of each point, point type, complete wiring diagram for each point from controller to input or output device, field device type, and location, etc.

d) Communications cable schematic showing panel and controller locations, controller power source, and all interconnecting data and communication conductors. Arrange the panels in the order in which they will actually be interconnected in the field.

e) On control drawings show sensor, panel, and equipment locations by referring to room number.

f) DDC network configuration, complete with interconnection diagrams for all peripheral devices, batteries, power supplies, etc.

g) A bill of material shall be shown on each drawing. The bill of material shall include the device code used on the controls drawings, description of the product, name of the manufacturer, complete model number, measurement range (if applicable), and quantity.

h) Identify the electrical power source for each DDC panel by location (room number), panel designation, and breaker number. Include the identification on the drawing and at the DDC panel itself.

i) Submittals shall also include a complete test plan and procedures. Test plan shall be coordinated with the Testing, Adjusting, and Balancing Contractor per Section 23 05 93. The test plan shall delineate the methods of testing and recording the results of the point-by-point verification and calibration of the hardware and the testing and tuning of the software. The test plan shall include a listing of all hardware points with columns for calibration, test and certification. There shall be a similar record for software.

3. Fourteen (14) days prior to system demonstration and acceptance testing:

a) Provide software programs and sequences written in the program language and in English.

1.04 PROJECT RECORD DOCUMENTS

A. Upon completion of the installation, a complete set of record drawings shall be provided. The content and format of the drawings shall be as described previously.

B. Prior to final completion of the installation, prepare complete Operation and Maintenance (O&M) manuals. Refer to Division 1, and Division 23, for requirements. Also provide one set of electronic media containing all CAD-prepared.

1. Temperature control diagrams, including an explanation of the control sequence of each system along with the following instruction wherever applicable.
a) Emergency procedures for fire or failure of major equipment.
b) Normal starting, operating and shutdown procedures.
c) Summer or winter shutdown procedures.

2. The temperature control diagrams are to be wall-mounted in an aluminum frame with plastic laminate glass in a location approved by the DPS Controls Application Engineer, preferably in the main mechanical equipment or fan room where the main control panel is located.

3. A reduced copy of the controller drawing, listing all input and output points with functional descriptions, shall be placed inside the door to each controller enclosure in a plastic pocket attached to the door. The sheet shall be laminated. One sheet is required for each controller housed in the enclosure. Control System Programmer’s Manual with complete description of the custom control language and associated editor, including sample-written programs. Provide complete sets of all Programmer’s Manuals. All software and firmware algorithms shall be completely described and documented.

4. Provide maintenance, installation, and engineering manual(s) that clearly explain how to debug hardware problems; how to repair or replace hardware; preventive maintenance guidelines and schedules; calibration procedures; and how to engineer and install new points, panels, and operator interfaces.

5. All CAD drawings and controller dumps, generated for operation of the system, shall be included as part of the system documentation. This information shall be submitted in a machine-readable format (i.e., floppy disk).

6. Input/output schedules, data sheets, and all other items required. Describe all regular maintenance that will need to be performed on the DDC hardware. Provide list of recommended spare parts. List all replacement parts with part numbers.

7. Complete original-issued documentation, installation, operation manuals, and supporting software for all third-party hardware and software furnished and installed as part of the system or required for the operation of the system, including remote terminals, user's computer work station, monitors, graphics and memory boards, network servers, printers, and modems.

8. A diagram of the wiring layout for the communication network showing the room number of the location of all junction boxes shall be shown on the diagram. Distances between termination points shall be indicated with a description of routing.

1.05 DEMONSTRATION AND TRAINING

A. The Contractor shall provide a minimum of 16 hours of training in 4-hour blocks one day per week on system operations and provide control demonstration time at the job site for the Owner's personnel.

B. This Contractor shall provide at least 4 hours in one session of classroom training at times and location as directed by the Owner. The training shall focus on design, operation, and maintenance procedures of the products installed and shall cover:

1. Hardware configuration, including PC boards, switches, communication and point wiring, and location of all sensors and control devices.

2. Hardware maintenance, calibration, troubleshooting, diagnostics, and repair instructions.

3. Operation of central work station, including logging on and off, interrogating the system, producing reports, acknowledging alarms, overriding computer control, changing firmware and software parameters, and generating and linking graphic screens.

4. The operational sequence of each system, including normal and abnormal operating modes, operating control strategies, and operator actions required to reset or monitor the system.

5. Programming using the editor, program design, syntax, and loading of custom control software.

6. Recovery procedures from power failures.

7. Alarm formats.
8. Maintaining software and programming backups.

C. The instructor(s) for the above sessions shall be employee(s) of the Control Contractor whose primary function is customer training and applications support.

D. A minimum of two copies of the most current control drawings shall be provided to the DPS HVAC Shop before the training begins. These shall be in addition to the drawings to be provided under Part 1 Shop Drawing requirements, if the O&M Manuals have not been turned in to the Architect before the time of the training.

E. The training may be phased. The Owner may elect to conduct training and demonstration in two- to four-hour sessions over the life of the warranty period. All instructional material shall be available to each employee at each training session up to a maximum of ten (10) individuals.

F. All demonstration and training sessions shall be coordinated with the DPS Controls Application Engineer.

1.06 WARRANTY

A. The warranty period shall begin as authorized by the DPS Controls Application Engineer in writing. Authorization will not be given before the following conditions are met. Under no conditions will the Controls Warranty begin before the starting date of the General Warranty for the overall project.

1. Completion of the tests and demonstration required in Part 3 and correction of all problems discovered during the testing process.

2. Completion of all punch list items that are the direct responsibility of the Controls Contractor.

3. Conduction of a preliminary training session for personnel of the HVAC Shop of the District. The training shall consist of an orientation session at the job site to familiarize personnel with the location and type of controlled equipment and controls on the project, a discussion of the control sequences, and a review of the control drawings. A copy of the most current control drawings shall be provided to the DPS HVAC Shop at this time as well. Other, more detailed, training sessions (such as for review of the control programs) may be held at a later date during the warranty period.

4. Completion and distribution of the as-built control drawings, including correction of all items noted by the Owner and Engineer after review of the documents.

B. The control system shall be guaranteed to be free from original defects in material and workmanship and in software design and operation for a period of 24 months after completion of the contract. The Contractor shall provide the necessary skills, labor, and parts to assure that all system and component failures are promptly repaired.

C. The Contractor shall receive calls during the warranty period for all problems or questions experienced in the operation of the installed equipment and shall take steps to correct any deficiencies that may exist. The response time to critical problems (critical problems are those that may shut down or disrupt the operation of the school or create potential damage to the building or equipment) shall be four (4) hours maximum.

D. During the warranty period, the Contractor shall maintain a backup of all software installed in the system. The backup shall be updated monthly or whenever the Contractor makes a change to the software. A reload of backup software into the system shall be performed by the Contractor immediately upon notification by the Owner. The reload shall be free of charge unless it is due to a power failure of a duration longer than the battery backup.

E. The Contractor shall optimize all control software to assure acceptable operating and space conditions and peak energy efficiency. This shall include changes needed to optimize operation of the systems even if not explicitly described in Control Strategies.

F. The Contractor shall include the extended warranty for upgrades of controllers installed in the building for the warranty period.

G. At the end of the warranty period, the Contractor shall supply updated copies of the latest versions of all project record documentation as described in the Part 1 Project Record Documents requirements. This includes final updated drawings, software documentation, and magnetic media backups that include all changes that have been made to the system during the warranty period.
H. Coordinate with DPS Controls Application Engineer in advance before connecting new DDC system to District network.

I. Once the building DDC system is connected to the network, the Contractor shall notify the DPS Controls Application Engineer before and after performing any work on the DDC components, and report any changes made.

J. During the warranty period, District personnel shall make a reasonable effort to determine if a problem is due to the control system or some other source not the responsibility of the Controls Contractor, before requesting warranty service. However, if the Controls Contractor is called out and determines that the problem is not due to the controls system or other building components, the Contractor shall not charge the District for a service call if it is determined that the source of the problem is not his responsibility.

1.07 OWNERSHIP OF PROPRIETARY MATERIAL

A. All project developed hardware and software shall become the property of the Owner. These include but are not limited to:

1. Project graphic images.
2. Record drawings.
3. Project database.
4. Job-specific application programming code.
5. All other documentation.

PART 2 PRODUCTS

2.01 CONTROL VALVES

A. The automatic control valve shall be sized by the Controls Contractor for the appropriate pressure drop specified by the A/E to ensure proper throttling performance at all system loads.

B. Closeoff (differential) Pressure Rating: valve actuator and trim shall be furnished to provide the following minimum close-off pressure ratings:

1. Water Valves:
 a) Two-way: 150 percent of total system (pump or building domestic water pressure) head.
 b) Three-way: 300 percent of pressure differential between ports A and B at design flow or 100 percent of total system (pump) head.

2. Steam valves: 150 percent of operating (inlet) pressure.

C. Water Valves:

1. Body and trim style and materials shall be per manufacturer's recommendations for design conditions and service shown, with equal percentage ports for modulating service, except where stated otherwise.

2. Sizing criteria:
 a) Two-position service: Line size.
 b) Two-way modulating service: pressure drop across the valve in a wide-open position, with full flow through the valve, shall be equal to 50 percent of the available pressure differential between the mains, with a minimum of four (4) psi.
 c) Three-way modulating service: pressure drop across the valve in a wide-open position, with full flow through the valve, shall be equal to twice the pressure drop through the heat exchanger (load), with a three (3) psi minimum.

3. Construction:
a) Valves ½” through 2” shall be bronze body or cast brass ANSI Class 250, spring loaded, Teflon or ring packing, and stainless steel stems. Two-way valves to have replaceable composition disc. Johnson VG-7000, Siemens 599 or Belimo globe valves

b) 2-½” valves and larger shall be cast iron ANSI Class 125 with guided plug, stainless steel stems and Teflon or ring packing.

c) Water valves with caged trim are not allowed.

4. Water valves shall fail normally open or closed as scheduled on plans or as follows:
 a) HW zone valves - normally open.
 b) Heating coils in air handlers - normally open.
 c) Chilled water control valves - normally closed.
 d) Other applications - as scheduled or as required by sequence of operation.

5. Butterfly valves: modulating, three-way valves or two-position valves 4” and larger may be tight-closing butterfly valves. Full-lug type, 250 psi WOG, extended neck, cast iron body, aluminum/bronze disk, stainless steel shaft, field replaceable cartridge design, EPDM seat and seal with integral actuator. The modulating, three-way valve substitute shall consist of linked butterfly valves with a factory-installed linkage. Modulating valves shall be sized for three (3) psi pressure drop. Johnson Controls VF, Siemens or Belimo

6. Baseboard heating: modulating (not two-position) valves/

7. Evaporative cooler drain and fill valves:
 a) Bronze, full-port, two-piece body design; chrome-plated, solid bronze ball with Teflon seats, stem packing shall be adjustable for wear with adjusting screw, 150 WSP, 600 WOG.
 b) Bronze valve material composition shall meet ASTM B62.
 c) Provide valve complete with actuator, mounting bracket, and all required linkage.
 d) Valve normal position shall be as shown on the drawings.

8. For systems with glycol solutions, provide documentation that the valve components in contact with the fluid are compatible with glycol.

D. Steam Valves:

 1. Body and trim materials shall be per manufacturer's recommendations for design conditions and service, except stainless steel seats are required for all applications. Equal percentage ports for modulating service.

 2. Sizing criteria:
 a) Two-position service - pressure drop 10 to 20 percent of inlet psig.
 b) Modulating Service - 15 psig or less. Pressure drop 80 percent of inlet psig.
 c) Modulating Service - 16 to 50 psig. Pressure drop 50 percent of inlet psig.
 d) Modulating Service - over 50 psig. Pressure drop as scheduled on plans.

 3. Steam valves shall fail normally open or closed as scheduled on plans or as follows:
 a) Low pressure heating - normally open.
 b) Heating coils in air handlers - normally open.
 c) Steam-to-water converters for heating water - normally open.
 d) Steam-to-water converters for domestic hot water - normally closed.
 e) High-pressure applications - as scheduled.
2.02 AUTOMATIC DAMPERS
A. All dampers not specified with equipment in other sections of the specifications shall be furnished by the Temperature Control Contractor and shall be single or multiple blade type as required.
B. All damper frames are to be constructed of #13 Gauge G90 galvanized sheet metal, roll formed into channels and welded for maximum strength and shall have flanges for duct mounting.
C. All blades shall be fabricated from single #16 gauge G90 galvanized sheet metal. Blade pins shall be steel, zinc plated, and chromate treated to provide no-slip pivoting when a damper is used as a single module, or is interconnected with others. Blades shall be suitable for high velocity performance.
D. Dampers used for outside, return, or exhaust air, and those used for zone mixing dampers shall be provided with seals to provide tight shut off along all edges of all blades; tight closing and low leakage damper of less than 4.5 cfm/ft. at 1” static pressure. Bearings shall be oil impregnated to provide constant lubrication.
E. Blade edge seals and top and bottom channel seals shall be easily replaced if they are damaged.
F. An internal stop shall be provided on all dampers to prevent over-rotation in the closed position.
G. Ruskin CD-50, Johnson DCO/DCP, NCA SCD-LL-57 or approved equal.

2.03 LOCAL CONTROL PANELS
A. NEMS-1 locking panels shall house DDC controllers transformers, power supplies, communications interfaces, transducers/sensors that do not need to be field mounted, relays, wire termination/junction strips, etc..
B. Devices shall be flush-mounted on panel face.
C. Manual timer overrides are not permitted. Manual overrides will be handled through a software function. If any manual override exist they shall be removed as part of this project.
D. Internal components shall be securely mounted on removable sub-panels. Each component shall be individually labeled with function and device identification, as shown on control/interlock shop drawings. Label all components in accordance with Specification Section 26 05 53 Identification for Electrical System.
E. Interconnections between internal and face-mounted devices pre-wired with color-coded stranded conductors neatly installed in plastic troughs and/or tie-wrapped. Terminals for field connections shall be UL-listed for 600-volt service, individually identified per control/interlock drawings, with adequate clearance for field wiring. Control terminations for field connection shall be individually identified per control drawings.
F. Provide on/off power switch with over-current protection and a 1-½” main air gauge for control pressure sources to each local panel. Provide a 120-volt duplex outlet inside each control panel that houses a DDC controller (except VAV controllers) if there is not an outlet within 5’ of the enclosure.
G. All control panel locks shall be the same. Contractor shall give the keys to the DPS Controls Application Engineer at completion of training.
H. All field devices shall be mounted in panels. Exceptions include devices with enclosed electrical terminations, and designed to be installed on the controlled/monitored equipment and (e.g., pipe/duct temperature/pressure sensors) or those for space mounting (e.g., space temperature sensors).
I. All advisory controllers shall be provided with battery backup UPS system securely mounted to the wall or inside of the controller cabinet. Basis of design is: CyberPower CP850PFCLCD.
 1. Voltage: 120/1/60
 2. Voltage Range: 78-142
 3. Frequency Range: 57-63
 4. Output VA / Watts: 850 VA / 510 W
 5. Battery runtime half/full load: 10 min / 2 min
 6. Warranty: 3 years limited
2.04 TEMPERATURE SENSORS

A. Temperature sensors shall be thermistor or platinum RTD type.

B. Space (room) sensors shall be surface mounted in standard plastic covers. Sensors shall have a tamper resistant cover with accessible control to permit a +/- 3 deviation from the stored setpoint. Minimum range shall be 50 to 95. Place thermostats or temperature control sensors inside covers that discourage tampering and vandalism in gyms, corridors, art rooms, unsupervised or athletic areas or where shown on drawings. Metal guard and key lock are not required in administration areas or seated classrooms.

C. Immersion-type sensors with matching thermowells shall be used for water/steam applications. Thermowells shall extend beyond to the outside of pipe insulation.

D. Provide averaging elements for all air temperature-measuring applications, except for return air and discharge air applications. Provide sun shields for outdoor sensors.

2.05 SENSOR/TRANSMITTERS

A. Transmitters shall have direct-acting, linear 0-5vdc or 4-20madc output signal compatible with controller, with full-scale accuracy of ±1 percent or better. Zero and span shall be field-adjustable.

B. Pressure

1. Air pressure transmitters shall have a minimum overpressure rating of 10” W.C or up to eight times the rated pressure without damage, whichever is greater.

2. Water differential pressure transmitters shall have stainless steel diaphragm construction, overrange pressure limits selected by the engineer for the application, and the accuracy shall be ±0.25 percent of calibrated span.

3. All differential pressure transmitters for water service shall have a differential pressure gauges mounted at the point of application. Provide tees with ½” size, quick-connect fittings (Hanson fittings) on the high- and low-pressure lines.

4. Air differential static pressure transmitters for critical applications (i.e., where the differential pressure can drop below 0.2” W.C. - such as outside-air flowrate monitoring) shall be an Air-Monitor, Veltron II Model, differential-pressure transmitter or Ashcroft only.

5. All differential pressure transmitters for air shall have panel-mounted differential pressure gauges. Provide tees with removable caps on the high- and low-pressure lines.

6. Provide a wind dampening "weatherhead" for each atmospheric pressure sensing point (DHYER A-306). Design to be located, as best as possible, above wind eddies caused by the building structure and roof equipment.

7. Transmitter Span Selection:

a) The span of each transmitter shall be selected by the Contractor. General selection procedures are given below.

b) The selection of the appropriate transmitter span is a crucial step in the design of a functional control system. In general, the span of the transmitter should match the normal ranges of the variable to be controlled. For example, the measurement of system pressure where the normal operating pressure is 20 psi and the peak system pressure is 35 psi, the correct span selection would be 0 to 50 psi. A 0 to 100 psi span, while workable, would be operating in the lower third of the span under normal conditions. This decreases the controller’s ability to detect small changes in pressure. Ideally, the control setpoint should be at approximately 75 percent of the transmitter’s span. However, expected maximum and minimum values encountered during normal operation of the system must be accounted for.

c) Particular attention to transmitter span must be taken with airflow monitoring stations. The recommendations of the airflow-monitoring station supplier must be followed. Be sure to include an altitude correction factor.
d) Transmitters found operating in the lower 33 percent or upper 20 percent of their span, during normal conditions of system operation, shall be replaced at the Contractor’s expense with units having an acceptable span.

C. Water flow sensors should be in-line or insertion turbines, vortex, or magmeter types.

D. Fan and pump status shall be by current switch.

2.06 ELECTRIC AUXILIARY DEVICES

A. Fan and pump status shall be by current switch.

B. Use damper end switches that are integral to the actuator.

C. Control relays shall include a ‘energized’ indication light.

D. Time-delay relays shall be adjustable plus or minus 200 percent (minimum) from the required setpoint.

E. Multi-Level Control Panel for Liquids: the controls shall be conductance-actuated, utilizing electrodes and the conductivity of the liquid itself to sense level. The sensor shall have four (4) level-sensing electrodes and one (1) ground electrode, in lengths suitable for the application. Unit must function on a fiberglass tank.

2.07 ELECTRIC ACTUATORS

A. Damper actuators shall be selected by the Controls Contractor per manufacturer's recommendations to provide sufficient close-off force to effectively seal damper. Furnish a separate actuator for each damper section.

B. All actuators shall provide a means of manually positioning the output coupling in the absence of power.

C. Dual independently adjustable auxiliary switches must be integral to the actuator. The addition of this feature as an accessory kit is not acceptable.

D. All actuators shall provide an easily readable high contrast yellow on black position indicator.

2.08 SAFETY CONTROLS

A. Freezestats: Provide one freezestat for each coil section of each coil bank (e.g., one coil with three sections requires three freezestats). Wire freezestats to protect unit in both hand and automatic operation. Wire one set of contacts directly to the fan starter circuit and the other to an alarm input. The device shall be manually reset unless indicated otherwise.

B. Duct Smoke Detectors: specified to be furnished under Division 26 and mounted by this Contractor.

1. This Contractor shall be responsible for all smoke detector interlock wiring to HVAC equipment.

2. Wire smoke detectors to shut down the equipment in 'hand' and 'automatic' mode.

2.09 OPERATOR INTERFACE

A. Web Server PC (may not be needed) - to be specified by the A/E if needed.

B. Operator Interface Software (A/E may not specify this if previously provided) – The software shall provide the following functions:

1. Graphic Screens - Display of custom graphic screens with dynamic point information and the ability to show animation by shifting image properties based on the status of the point.

 a) NOTE - The terms “graphic screens” and “graphic(s)” in this specification refers to graphical images viewed via a PC running Operator Interface Software (a “Thick Client”) or a PC viewing graphical images on web pages via a web browser (a “Thin Client”).

 b) Graphic Generation: Graphic files shall be created with the use of a graphics generation package furnished with the system. The graphics generation package shall also provide the capability of capturing or converting graphics from other programs such as AutoCAD.
c) Graphics Library: Furnish a library of standard HVAC system/equipment graphics screens such as chillers, boilers, air handlers, terminals, fan coils, unit ventilators, etc.; and standard symbols for HVAC components including fans, pumps, coils, valves, piping, dampers, ductwork, etc.

2. System Applications - Provide the following:
 a) System Database Save and Restore: Automatic (when changes occur) or manual backup of the system databases (e.g., a DDC Panel point database and/or control program). The operator shall also be able to manually initiate a download of a specified database to any DDC Device in the BAS.
 b) System Configuration: Provide an application for DDC System configuration (DDC Device communications addressing, point definition, etc.).
 c) Help: Provide a context sensitive, help system to assist the operator in operation of the DDC System.
 d) Security: Each operator shall be required to log on to the DDC System with a user name and password in order to view, edit, add, or delete data. System security shall be selectable for each operator.
 e) System Diagnostics: The system shall automatically monitor the operation of all DDC Devices including network communications and provide an alarm when a failure occurs.
 f) Standard DDC System Operating Features:
 1) Point/Data Overrides/Modifications – Output points and system data (i.e., setpoints) shall be modifiable (i.e., auto vs. manual and overridden value) via a link to each item’s graphic screen image.
 2) Alarm Processing – An alarm log with acknowledgement and alarm clearing functions; and the ability to configure alarm limits, and system reactions (e.g., an alarm message, communications method, etc.).
 3) Trend Logs: The ability to define a custom historical trend log for any data in the system. The data can be displayed tabular or graphical.
 4) Scheduling: A graphical method for scheduling equipment operation including normal, holiday and exception scheduling.

3. Control Software Editors: The software shall allow for Operator editing of all control applications including:
 a) Application Specific Controller: A full screen graphical editor for each type of application that allows the operator to view and change the configuration, name, control parameters, and set points for all controllers.
 b) Custom Control Programming: A graphical editor for creating, modifying, and debugging the custom control programming for all Routers/Panels/Controllers.

4. Web Server: This shall, as a minimum, allow Thin Clients (PC’s running web browser software) to perform all the capabilities described above except: Graphic Generation, System Database and Restore, System Configuration, and Control Software Editors.

2.10 DDC CONTROLLER REQUIREMENTS

A. General:
 1. A separate DDC controller for each AHU or other HVAC system/equipment shall be supplied.
 2. No more than one DDC controller shall be provided for each AHU or other HVAC system. Provide point expansion modules to meet this requirement. Certain systems (e.g., chiller plants) may be best served by multiple controllers – it is the A/E’s responsibility to make this determination and to clarify this issue in the design.
 3. Equipment Controls and Subsystem Interfaces:
 a) Provide interfaces to equipment controls that are to be integrated to the DDC System.
1) No hardware interface is required for equipment controls that communicate via BACnet/IP. However, provide sufficient DDC System capacity for mapping all BACnet/IP points/data into the DDC system.

b) Provide interfaces to Subsystems that do not communicate via BACnet/IP.

c) “Interfaces” shall include standard/optional modules and for DDC Controllers (i.e., an MS/TP interface or Modbus gateway) are provided by separate DDC system devices (i.e., routers/gateways).

d) See the remainder of this design, and equipment controls and Subsystem specifications for more information.

2.11 GENERAL PURPOSE APPLICATION CONTROLLERS

A. General Purpose Multiple Application controllers shall be B-BC or B-AAC BTL-listed for BACnet communications. JCI N1 or N2 protocol communications may be acceptable in certain retrofit situations – consult with DPS about this issue.

B. At least one B-BC controller with BACnet/IP communications shall be provided. [Note to Consultant: Consult with the DPS Controls Application Engineer to determine if more than one B-BC controller with BACnet/IP is required for the project]. This controller (a JCI NAE or NCE) need not be provided with integral point termination capabilities. Larger projects (e.g., High Schools) may benefit from more than one of these controllers – consult with DPS Controls Application Engineer about this issue. Other controllers shall use the MS/TP data link technology.

C. Point Expansion: The General Purpose Multiple Application Controllers shall use point expansion modules to meet the design’s point requirements.

D. Point Programming: All point data, algorithms and application software within a controller shall be custom programmable from the operator workstation. Controllers with factory-programmed control sequences (e.g., for a typical AHU or other system) shall not be acceptable.

E. Each output point shall have an integral manual override switch that allows the output to be configured in one of three states: on, off, or automatic operation. An LED shall indicate the state of each output.

2.12 ZONE CONTROLLERS

A. The Zone Controllers shall be B-ASC or B-AAC BTL-listed for BACnet communications using the MS/TP data link technology. JCI N2 protocol communications may be acceptable in certain retrofit situations – consult with DPS about this issue.

B. A Zone Controller shall only be used when the factory programmed sequence meets that required by the sequence of operation.

C. VAV box Zone Controllers controls shall be mounted by the VAV box manufacturer in the factory. The A/E is responsible for coordinating this requirement with the VAV box specifications.

D. Airflow Transducer: Zone controllers for VAV operation shall have a built-in differential pressure transducer for use with the box’s integral pitot-type air flow pickup. The A/E shall coordinate this requirement with the VAV box specification to ensure that the boxes are provided with the flow pickup.

E. Integral Actuator: Each Zone Controller for VAV applications shall have an integral direct coupled electronic actuator.

PART 3 EXECUTION

3.01 CONTROL WIRING

A. Provide all control and communication wiring (except CAT 6 for Ethernet/IP) including that for connecting equipment controls and Subsystems to the DDC System.

B. The Cat 6 wiring drops that interconnect the DDC System Controllers, equipment controls, and Subsystems, and the devices to the IBAS shall be installed by the telecom contractor. The installer shall be Panduit certified as outlined in Division 27, Contractor Qualifications. Construction contractor needs to coordinate timing of wiring installation to facilitate the installation and testing of the IBAS system.
1. Final wiring from the DDC System Controllers, equipment controls, and Subsystems to the drops shall be provided by the Controls Contractor.

C. Control wiring shall be concealed except in equipment rooms.

D. Electrical installation will be according to the following requirements:
 1. All wire and cable runs will be protected with metallic conduit or cable trays. Exceptions are as follows:
 a) NEC Class 2 low voltage wiring where not exposed to view such as above suspended ceilings, in shafts, etc., may be run in cable tray or properly secured to the building (when approved by code authority).
 b) Wiring enclosed in temperature control panels.

E. All wire and cable runs will be labeled or otherwise coded at both ends, the labeling or coding scheme should be well-organized, consistent, and documented (submitted).

F. All low voltage instrumentation wiring shall be minimum 18 AWG stranded copper for sensors and communication. All low voltage cables in ceilings shall be UL listed for air plenum service and suspended neatly from the overhead structure. Do not lay on top of ceiling tiles.

G. Flexible metal conduits and liquid-tight, flexible metal conduits shall not exceed 3' in length and shall be supported at each end. Flexible metal conduit less than \(\frac{1}{2} \)" electrical trade size shall not be used. In areas exposed to moisture, including chilled and boiler rooms, liquid-tight, flexible metal conduits shall be used.

H. Low-voltage (24V or less) AC or DC wiring shall not be run in conduit containing 120 VAC wiring.

I. Label all temperature control wiring junction box covers with an adhesive backed water-proof flexible mylar label with the letters T/C, using an orange background with black letters to differentiate them from junction boxes installed by the electrical and fire alarm contractor. The labels shall be 3" x 3".

J. Use proper size wire nut type connectors on all sensor wiring with factory recommended twisting. Crimp connectors are not allowed on sensor wiring.

3.02 INSTALLATION AND SETUP REQUIREMENTS

A. Install discharge air temperature sensors in all VAV boxes with reheat coils. Wire each sensor to an AI point termination on the box’s associated Zone Controller.

B. Averaging Sensor Elements, Low-Temperature Detection Elements
 1. The elements of averaging sensors shall be long enough to serpentine across the area served. The element shall cover the duct area completely and shall be equally spaced. Use copper radius clips at the bends and protect sensor elements at duct penetrations and other points of contact with poly-tubing.
 2. Low-temperature detection devices shall fully cover the coil face as described in the Part 2 Safety Controls requirements. Mount and protect elements as described above.
 3. Sensing elements shall be located so as not to interfere with filter changing or other maintenance activities. The elements shall be mounted downstream of the coil served.

C. Averaging-type sensing elements shall be firmly supported in ductwork or air-handling units using \(\frac{1}{2} \)" EMT or other auxiliary support.

D. For all applications utilizing outside air, relief, isolation or exhaust dampers: install an E/P to automatically close the dampers when its associated air-handling unit or fan is turned off. The E/P shall be wired so the damper is closed when the fan or AHU is turned off with the starter switch in the OFF or AUTO position (or in either the BYPASS or VFD modes when a variable-frequency drive is used). The dampers shall open, or return to automatic control, as required, when the fan or AHU is turned on, whether the started switch is in the HAND or AUTO position (or in either the BYPASS or VFD modes when a variable-frequency drive is used).

E. The name of each point shall conform to the District’s standard protocol used at DPS. The intent is to utilize standard point names within a project and from one project to another. Consult DPS Controls Application Engineer for current standards.
F. Utilize programming protocol used by JCI at DPS whenever possible.

3.03 CONTROL DEVICE LOCATIONS
A. Outdoor temperature or RH sensors shall be located on the design drawings, and generally on a northern exposure, in a shaded location, preferably in a place where there is a continuous stream of outside air over the sensor, unless shown otherwise. Consult with the DPS Controls Application Engineer to determine the preferred locations.
B. Provide wind-dampening "weatherhead" with insect screen on outdoor atmospheric pressure-sensing point and mount at least 3' above the highest roof structure to minimize false readings due to wind direction and/or eddies.
C. Remote control devices not in local panels shall be accessible for adjustment and service, below 6' above finished floor whenever possible.

3.04 CONTROL PANELS
A. Electro-pneumatic switches (EPs) and relays shall be grouped together and installed in a single, central panel located next to the enclosure housing the associated controller. At the Contractor's option, the relays and EPs may be installed in the same enclosure as the controller. Remote-mounted relays and EPs are not acceptable. Remote-mounted PE switches are allowed.
B. Electrical power for each panel shall be from a dedicated circuit. Where available in a building, utilize emergency power circuits for all controls. It is the A/E's responsibility to show a sufficient number of dedicated control circuits in locations where control power will be needed on the electrical drawings. For retrofit applications, where connecting to existing control-power wiring, it is the Contractor's responsibility to verify that the power source is from a dedicated circuit. [Note to Consultant: Coordinate power sources with the Electrical Engineer, show all equipment requiring 120V power on the drawings.]

3.05 IDENTIFICATION
A. All control equipment shall be clearly identified by control shop drawing designation code and a functional description as follows:
1. Control valves: Brass tags.
2. Other remote control devices and sensors (located both within and outside of control panels): metal tags, plastic laminate labels, or (on non-porous surfaces only) adhesive backed labels (i.e., from a laser printer or a dedicated label-making device). Do not attach tag or label to removable covers, adjacent surface etc.,
3. Control panels: Engraved plastic laminate labels. Indicate panel number and systems served.
4. All wiring, including wiring within factory-fabricated panels, shall be labeled within 2" of each termination with DDC point number/controller number or other descriptive information.
5. Plenum-rated cabling shall use different jacket colors to differentiate between the following:
 a) Input point wiring.
 b) Output point wiring.
 c) Communications (i.e., MS/TP).
 d) Low Voltage power.
6. All metal and plastic engraved labels shall be secured with chains, nylon tie-wraps, or rivets. Permanent adhesive is acceptable only when mechanical fasteners would damage the labeled equipment.
7. All switches, relays, and panel components shall be labeled. Relay bases shall be labeled, not the removable relay cube.
8. Labels shall not be mounted on removable surfaces, such as cable tray covers.

3.06 OPERATOR INTERFACE AND OTHER SYSTEM CONFIGURATION
A. General:
1. All DDC System schedules, alarms and trends for this project shall be set up under this section (i.e., for communication to the IBAS).

2. Alarms and trends shall also be communicated to the DDC System's local Operator Interface until the IBAS or warranty period is complete.

3. Schedules shall also be available for modification from the local Operator Interface until the IBAS or warranty period is complete.

4. Consult with the DPS Controls Application Engineer to determine when the local Operator Interface functionality is no longer needed and disable any DDC System communications to the Operator Interface.

B. Graphics – Provide that specified by the A/E for use during system start-up, testing, commissioning and the warranty period (in addition to that provided by the IBAS).

C. Alarms:

1. Size DDC System controllers so that 48 hours of alarm information minimum can be stored at the building (not including any Operator Interface archiving capacity).

2. Set up alarms so that:
 a) They are not issued when the associated system is off (e.g., an alarm for an AHU supply air temperature shall not be issued when the AHU is off).
 b) The alarm limits vary with the associated operating mode (e.g., a space temperature’s alarm limits changes between occupied and unoccupied modes).
 c) The alarm limits vary with the associated set-point (e.g., an AHU supply air or space temperature’s alarm limits vary with the set-point if reset).
 d) Consult with the DPS Controls Application Engineer to determine the appropriate alarm limits.

3. The following data (and/or BACnet properties or service primitives) shall be associated with each alarm generated/stored by the DDC System:
 a) Time and date of the alarm.
 b) Alarm Priority
 c) Event (alarm) type
 d) The BACnet “From” and “To” states
 e) The BACnet “Event Values” (e.g., alarm limit)
 f) A text description of the alarm condition including:
 1) Location (building, floor, zone, office number, etc.).
 2) Equipment (air handler #, pump, etc.).
 g) Initiating device and object identifier
 h) Acknowledgement time and date
 i) Operator who issued acknowledgement.

4. Alarms shall be generated by the DDC System upon the occurrence of one of the following events (in addition to the specified in the Sequence of Operation):
 a) Failure of a controller or any other DDC System hardware components.
 b) Failure of communications between DDC System components; and between the DDC System and the IBAS, equipment controllers or Subsystems.
 c) A monitored status indicating a discrepancy between the actual and the required value.
d) A monitored value does not meet criteria established by the operator.

e) The deviation of a variable from set-point exceeds operator-established criteria.

f) The output to a final control element is outside operator-established criteria.

g) A digital input is in the state defined by the operator as indicating an alarm condition.

h) Software failures and errors shall be diagnosed and annunciated by the BAS.

D. Trending:

1. Size DDC System controllers so that 72 hours of trend information minimum can be stored at the building (not including any Operator Interface archiving capacity).

2. Set up trends in each associated General Purpose Controller for all points using change-of-value (COV) trending – consult with the DPS Controls Application Engineer to select the appropriate COV thresholds for analog points/data:
 a) All Temperature sensors.
 b) All Pressure inputs excluding those used to sense flow.
 c) All Humidity sensors.
 d) All Gas concentration inputs.
 e) All Current or Voltage inputs.
 f) All Flow inputs.
 g) Digital input status points.
 h) All Analog outputs.
 i) Data (virtual points) used for operator override software switches (e.g., for changing operating status of systems and/or used for switching system modes of operation).

3. Set up trends for each of the following Zone Controller, if applicable, using change-of-value (COV) trending:
 a) Space, Supply air and Coil Return Water Temperature.
 b) Space/Zone Pressure.
 c) Space or Exhaust Humidity.
 d) Fan and Heat Pump Status.
 e) Air Flow.
 f) All Digital input status points.
 g) All Occupancy status input points.
 h) All Analog output points.

E. Point/Data Naming – Use the convention jointly developed with the DPS Controls Application Engineer and IBAS Contractor. See the Part 1 Submittals requirements in 25 50 00 Integrated Building Automation System.

F. IP Addresses - Addressing shall be set up per the direction of the DPS Controls Application Engineer.

G. BACnet Communications Addressing/Numbering – Consult with the DPS Controls Application Engineer to determine the address/number ranges to be used on this project and the standard for assigning specific addresses/numbers to each of the project’s networks and devices.

H. BACnet Broadcast Management Configuration – Only one controller for this project shall be configured as a BBMD (BACnet Broadcast Management Device).
3.07 IBAS COORDINATION

A. The Contractor shall configure the DDC System in preparation for integration with the IBAS as follows:

1. Data Access: The following DDC System data shall be available for communication with the IBAS (e.g., discoverable without need for any configuration or programming efforts of the DDC System by the IBAS contractor):

 a) All input/output points from the DDC System, equipment controllers or
 1) All points from Subsystems that do not communicate via BACnet/IP shall also be available.
 b) Set-points and other sequence of operation parameters as defined in Sequence of Operation and the following:
 1) Lead/lag sequence variables.
 2) Temperature set-points and reset limits.
 3) System switches.
 4) PID tuning parameters.
 5) Alarm limits.
 6) Heating/cooling switchover set-points.
 c) All start/stop schedules within the DDC System (including those associated with an optimum start and/or stop routine).
 d) All alarms set up within the DDC System.
 e) All historical data trended by the DDC System.

2. The DDC System shall accept time synchronization messages from the IBAS and update all controller time clocks in the system accordingly. Coordinate with the IBAS contractor to ensure that the time synchronization message(s) from the Niagara Supervisor works properly to perform this function.

3. The IBAS shall be used to view and modify DDC System schedules using BACnet Schedule/Calendar Objects.

4. Alarms:

 a) The DDC System shall communicate alarms to the IBAS (i.e., using BACnet Alarm and Event Services).
 b) Alarm priority – Coordinate with the IBAS contractor concerning the specific alarm priority values to be used.
 c) Any alarms that cannot be supported by BACnet Intrinsic Reporting (i.e., an alarm determined by the alarmed object’s alarm properties) or BACnet Algorithmic Change Reporting (i.e., one of the standard alarm/event algorithms defined in the standard) shall require additional alarm configuration efforts under this section. These efforts include configuring/programming the algorithm, defining a BACnet object which is used to communicate the alarm status and coordination of these alarm objects with the IBAS contractor.

5. Historical Data Trending:

 a) The DDC System controllers shall communicate trend data to the IBAS every 48hrs or when the trend log has reached capacity (whichever is sooner).
 b) Trend data shall be communicated to the IBAS using BACnet Trend Log objects.

6. Point/Data Operator Override - Any manual operator actions described by the sequences shall be available from the IBAS.
7. **Point/Data Override Priorities** – Coordinate with the IBAS contractor to ensure that commandable points/data (e.g., a BACnet Binary Output object) are written to at the correct priority level by the IBAS.

3.08 TESTING AND DEMONSTRATION

A. Prior to substantial completion, the control system shall undergo a series of tests to verify and demonstrate operation and compliance with this document. These tests and demonstrations shall occur after the Contractor has completed the installation, started up the system, and performed his own performance tests.

B. The tests and demonstrations described in this section are to be performed in addition to the tests that the Contractor performs as a necessary part of the installation, startup, and debugging process. Control system testing and demonstration shall be scheduled with the DPS Controls Application Engineer.

C. The Contractor shall provide at least two men equipped with two-way communication, and shall demonstrate actual field operation of each control and sensing point for all modes of operation, including day, night, summer, winter, occupied, unoccupied, fire/smoke alarm, and power failure modes. The purpose is to test and demonstrate the setup, calibration, response, and action of every point. Any test equipment required to prove the proper operation shall be provided by and operated by the Contractor. The DPS Controls Application Engineer, and District’s HVAC representative shall observe and review these tests.

1. The system software shall be complete such that each control loop shall function as specified in the Sequence of Operation. This Subcontractor shall be required to furnish the software program and test the operation of every control loop.

2. After all field connections have been made and control power is available in the control panel, the DPS Controls Application Engineer shall be notified and the control system shall be energized. Any required reloading of the software shall be performed and demonstration of the mechanical system, automatic temperature control system, and other connected systems shall commence.

3. This Subcontractor shall be responsible for all necessary revisions to the software as required to provide a complete and workable system consistent with the letter and intent of the specification. Control performance criteria is specified in the sequence of operations shown on the drawings and/or the specifications.

D. Operational logs for each system which indicate all setpoints, operating points, valve/damper positions, mode, and equipment status shall be submitted to the Architect/Engineer. These logs shall cover a 24-hour period and have a sample frequency of not more than 10 minutes. The logs shall be provided in printed and disk formats.

E. Control loops shall maintain setpoint within the following tolerances:

1. Air pressure ±0.5” w.g. range 0 to 6” w.g.
 ±0.01” w.g. range -0.1 to 0.1” w.g.
2. Airflow ±100 cfm.
3. Temperature ±1.0°F.
4. Humidity ±5 percent relative humidity.
5. Fluid pressure ±2.0 psi range 1 to 150 psi.
 ±2.0” w.g. range 0 to 50” differential pressure.
6. Control loops that do not meet the above tolerances shall be re-tuned.

F. This Contractor shall demonstrate HVAC alarms prior to placing ventilation systems in service.

G. Participate in all tests required between the DDC System and the IBAS. Provide a protocol analyzer (i.e., Wireshark) for use in the testing. See 15975 for more information.

H. The control systems will not be accepted as meeting the Requirements of Completion until all tests and demonstrations described in this section have been performed to the satisfaction of the DPS Controls Application Engineer.

I. After the system has operated properly for 90 days following startup of the final component of the heating and air conditioning systems, as-built copies of the software on electronic media and a printed copy shall be submitted to the Owner for permanent record purposes. Any software upgrading or enhancements to improve the system operation or as required for proper operation of the system during the first 24 months of operation is the responsibility of this
Subcontractor. When changes are made to the software, the Contractor shall immediately provide updated copies of the files on floppy disks.

3.09 CONTROL EXECUTION – GENERAL

A. Provide independently adjustable, minimum ON and OFF timers for each start/stop point. Initially set by times so as not to exceed six (6) starts per hour. On two-speed motors, provide a 20-second adjustable time delay when transferring from high-speed to low-speed, to allow the load to decelerate. This software time delay is in addition to the hardware time delay in the starters.

B. All setpoints, operating points, sequencing ratios, PID tuning parameters, and all other numeric and digital constants shall be adjustable by the user (with a high-level password) from the graphic. To change these values, the user shall not be required to modify program code, recompile, or download.

C. System logs, trend logs, and event-initiated logs shall be set up to provide historical and real-time monitoring of system operation. Logs shall be grouped by equipment.

D. Safety Shutdowns - General: all safety shutdowns of electrical equipment shall be hardwired. All shutdowns shall occur directly through interconnection of contacts on the safety device with the controlling circuit of the electrical equipment. Safety shutdowns through software are not acceptable. Interposing relays may be used only with prior approval of the DPS Controls Application Engineer when no alternative exists.

E. The Contractor shall notify the DPS Controls Application Engineer one month in advance of substantial completion so that the the IBAS (25 50 00) can be scheduled.

3.10 BAS SOFTWARE

A. Provide sufficient internal memory for the specified control sequences and logging. There shall be a minimum of 25 percent of available memory free for future use.

3.11 IBAS REQUIREMENTS

A. See 25 50 00 for Contactor requirements concerning the interface of the BAS system to the IBAS.

B. The point/data list at the end of 25 90 00, the drawings, or other specification sections includes points (and associated field devices) that shall be incorporated into the BAS design as part of this section.

C. Any points and data listed which are not controlled by the 25 00 00 system (e.g., lighting) shall be provided by input/output point interfaces to the 25 00 00 system if this information is not available by digital communications (e.g., BACnet).

D. See 25 90 00 and/or the drawings for the sequences of operation to be implemented by the system.

END OF SECTION 25 00 00